Elimination of motor nerve terminals in neonatal mice expressing a gene for slow wallerian degeneration (C57Bl/Wlds).
نویسندگان
چکیده
Degeneration of motor terminals after nerve section occurs much more slowly than normal in young adult mice of the C57Bl/Wlds strain. This observation prompted us to re-examine the possible role of degeneration and intrinsic axon withdrawal during neonatal synapse elimination. Polyneuronal innervation was assayed by two methods: intracellular recording of end-plate potentials in cut-muscle fibre preparations of isolated hemidiaphragm and soleus muscles; and in silver-stained preparations of triangularis sterni and transversus abdominis muscle fibres. No differences in the rate of synapse elimination were detected in unoperated Wlds compared with CBA, C3H/HE and BALB/c mice. At 3 days of age, > 80% of fibres were polyneuronally innervated. By 7 days this declined to approximately 20% of hemidiaphragm, 50% of triangularis sterni and 60% of soleus fibres. Nearly all fibres were mononeuronally innervated by 15 days. The mean number of terminals per triangularis sterni muscle fibre 7 days after birth was 1.55 +/- 0.07 in Wlds and 1.56 +/- 0.09 in wild-type mice. Three to 4 days after sciatic nerve section, near-normal numbers of motor units were evident in isometric tension recordings of the soleus muscle, and intracellular recordings revealed many polyneuronally innervated fibres. Mononeuronally and polyneuronally innervated fibres were also observed in silver-stained preparations of soleus and transversus abdominis muscles made 3-4 days after sciatic or intercostal nerve section. We conclude (i) that the Wlds gene has no direct impact on the normal rate of postnatal synapse elimination, (ii) that Wallerian degeneration and synapse elimination must occur by distinct and different mechanisms, and (iii) that muscle fibres are able to sustain polyneuronal synaptic inputs even after motor axons have become disconnected from their cell bodies.
منابع مشابه
Persistence of neuromuscular junctions after axotomy in mice with slow Wallerian degeneration (C57BL/WldS).
The present study was undertaken to examine the fate of neuromuscular junctions in C57BL/WldS mice (formerly known as OLA mice) after nerve injury. When a peripheral nerve is injured, the distal axons normally degenerate within 1-3 days. For motor axons, an early event is deterioration of motor nerve terminals at neuromuscular junctions. Previously, the vulnerability of motor terminals has been...
متن کاملEvidence that the Rate of Wallerian Degeneration is Controlled by a Single Autosomal Dominant Gene.
In a substrain of C57BL mice, C57BL/Ola, Wallerian degeneration in the distal segment of the severed sciatic nerve is extremely slow when compared to other mice. Despite this very slow degeneration in the distal segment regeneration of the motor nerves is not impaired. From suitable genetic outcrosses and backcrosses, the authors provide evidence that the rate of Wallerian degeneration in this ...
متن کاملA gene affecting Wallerian nerve degeneration maps distally on mouse chromosome 4.
When a nerve axon is cut or crushed, the nerve fibers in the distal part of the axon, separated from the cell body, undergo a form of spontaneous degeneration, known as Wallerian degeneration. A substrain of the mouse inbred strain C57BL, known as C57BL/Ola, carries a mutant form of a gene involved in Wallerian degeneration in the peripheral and central nervous systems, and in retrograde degene...
متن کاملAn 85-kb tandem triplication in the slow Wallerian degeneration (Wlds) mouse.
Wallerian degeneration is the degeneration of the distal stump of an injured axon. It normally occurs over a time course of around 24 hr but it is delayed in the slow Wallerian degeneration mutant mouse (C57BL/Wlds) for up to 3 weeks. The gene, which protects from rapid Wallerian degeneration, Wld, previously has been mapped to distal chromosome 4. This paper reports the fine genetic mapping of...
متن کاملRapid loss of motor nerve terminals following hypoxia-reperfusion injury occurs via mechanisms distinct from classic Wallerian degeneration.
Motor nerve terminals are known to be vulnerable to a wide range of pathological stimuli. To further characterize this vulnerability, we have developed a novel model system to examine the response of mouse motor nerve terminals in ex vivo nerve/muscle preparations to 2 h hypoxia followed by 2 h reperfusion. This insult induced a rapid loss of neurofilament and synaptic vesicle protein immunorea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The European journal of neuroscience
دوره 9 8 شماره
صفحات -
تاریخ انتشار 1997